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outer radius of plate
power series functions of v, 13
function of v, 13, determined via the boundary conditions
flexural rigidity depending on plate thickness, hx
modulus of elasticity in tension and compression
power series function of v, 13
undetermined multiplier function of X, 13, ho
maximum value of G corresponding to Pm at X m for first constraint
plate thickness at outer radius, a
plate thickness at center of plate
plate thickness at X

value of ho which makes plate weight a minimum for first constraint
value of hom for the ith value of v
plate thickness varying at center of plate, see Fig. 2
constant, see equation (18)
functions of v, 13, see equations (16) and (17)
bending moments/unit length
subscript notation signifying a maximum or a minimum
nth term, nth increment
notation defined by equation (9)
intensity of axisymmetric distributed load
upper bound value of allowable load q
notation defined in equation (32)
shearing force parallel to z axis/unit length of a section of a plate perpendicular to r direction
cylindrical coordinates; r, (J in plane of plate
displacement (deflection) in z direction of middle-plane (surface) of a thin plate
deflection at center of plate
weight of plate
dimensionless ratio ria
value of x which maximizes Gat xm ' using Pm in equation (31), for first constraint
limits of interval in which Gm > 1
dimensionless ratio hx/ho
dimensionless variable defining shape of plate
material density
"pencil of curves" for a given hOi' see Fig. 3
value of 13 satisfying at least the first constraint, making the plate weight an extremum
Poisson's ratio
uniaxial yield stress, equal values in tension and compression
lower bound value of the yield stress, "0' see equation (32)
normal stresses in radial and tangential directions
slope of middle surface as defined in equation (5)
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<Ph' <P p homogeneous and particular solutions of differential equation of equilibrium, see equations
(12) and (13)

<PI notation defined via equations (12) and (14)
<p', <p u first and second derivatives of <P with respect to x

INTRODUCTION

THE importance of structural weight saving for aircraft, aerospace and deep-diving sea
vehicles continues to give impetus to new methods and techniques of optimization.
Shanley [IJ and Gerard [2J have written extensively on this subject. The savings of even a
few ounces of weight for the various structural components of a framework, adds up to
many pounds which can then be put into useful payload or fuel. For some years now,
many investigators have worked in the area of limit design to obtain the collapse loads of
circular plates. These include Haythornthwaite [3J, Freiberger and Tekinalp [4J, Prager
and Shield [5J, Megarefs [6J, Popov [7J and Save [8]. Reference [4J developed a minimum
weight design for circular plates using von Mises' yield condition and the failure criterion
of limit analysis. Limit analysis is significant in determining a more realistic factor of
safety against total collapse or failure. For "one shot" operations, such as firing a non­
manned vehicle to land permanently on the moon or Mars, the design to near collapse of
certain portions of a structure may indeed save considerable weight. Of course, excessive
displacements of certain portions of a structure may be undesirable insofar as this might
affect the functioning of various black boxes on board. For space and sea vehicles which
must be designed for reuse, such as long-time orbiting satellites or moon vehicles returned
to Earth, very little of a structure can be permitted to yield. In fact, stresses and strains
must remain linear throughout the useful life of the vehicle.

Little work has been done to date which imposes more than one constraint on a
structural element. Haug [9J, in 1966, developed a procedure for minimum weight design
of beams with inequality constraints on stress and deflection using the calculus of variations.
Saelman [IOJ considered strength and stiffness for wing box beams. Sherman [IIJ developed
a procedure for the volume minimization of simply supported thin axisymmetric plates
subject to constraints of stress and displacement.

This paper is concerned with the weight minimization of thin axisymmetric plates of
variable thickness, clamped at the boundary, and subject to two constraint conditions.
These are, (1) a specified maximum displacement, W o, in terms of the outer radius, a, of the
plate, in the form of an equality and, (2) the von Mises-Hencky yield criteria is not violated
throughout the plate, i.e. the strain energy of deformation (distortion) is proportional to
the uniaxial yield stress, (J0' everywhere. Such a combination of constraints may be re­
quired for pressure-sensitive devices and where clearances are tight. Thin plate theory is
considered valid. The state of stress in the plate remains elastic everywhere. The material
is assumed to be homogeneous and isotropic.

To be meaningful in an engineering sense, the solution of this problem should be con­
sidered in terms of certain significant classes or diametral shapes of plates. Wang and
Worley [12J optimized a class of thin shells of revolution according to shape. In this paper,
the shape of the plate is such that the thickness varies exponentially with a single-sign
curvature only (see Fig. 4). It is based on a form of Pichler's [13J exact solution of the
differential equation of equilibrium for axisymmetric thin plates of varying thickness.
Timoshenko [14J has summarized Pichler's findings. The plate thickness, hx ' in a diametral
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section, varies exponentially with the radius, according to the equation

y = hx/ho exp( - fJX)2
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(1)

where ho is the thickness at the center of the plate. The necessary mathematics was de­
veloped to affect the minimization process satisfying the given constraints. The resulting
equations, containing infinite power series, were solved on the IBM 360/50 digital com­
puter. Solutions were obtained for the plate clamped at the boundary for a wide range
of the variable constants, i.e. load, Poisson's ratio, modulus of elasticity, plate outer
radius, yield stress and maximum displacement. Plotted curves and an example problem
are included herein.

FUNDAMENTAL RELATIONSHIPS

The differential equation of equilibrium of an element of a thin circular plate (see
Fig. 1) is:

where:

M
r

= D(d<P +V<P)
dr r

Mt = D(~+V ~~)
dw
dr

1 srQ= -- q . 2nr . dr
2nr 0

Q+ dO • dr
dr

z

r-----+---

FIG. 1. Equilibrium of element abed of a thin circular plate clamped on the boundary.
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The applied load, q, which can in general be an axisymmetric function of r, is taken as
uniformly distributed in this paper.

The differential equation can be put in dimensionless form, by letting

r
X=­

a
(8)

(9)

The deflection of the middle surface (as noted in the introduction) of a thin plate of
varying thickness is shown in Fig. 2, and defines 4>.

r •

<P= - dw
dr

w

/
Undeflected "middle - surface"

FIG. 2. Slope 1/J of the deflected middle surface at radius r.

Using equations 0)--(9), the differential equation of equilibrium of the second order
with variable coefficients becomes

(10)

The solution of equation (10) for 4> is the sum ofthe homogeneous and particular solutions,
4>h and 4>P' respectively, where

(11)
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A-. _ CA-. _ C[ 6/J(I+v) 3 62P2(I+v)(3+v} 5
'Ph - P 'P 1 - P x + 2-4 . x + 2 . 4 . 4 . 6 . x

63 /J 3(I+v)(3+v)(5+v) 7 J
+ 2.4.4.6.6.8 .x ...

px 2
c/>p = - 6(3 _ v)/J . exp(3/Jx ).

283

(12)

(13)

Equation (11) is a uniformly convergent series, and may be differentiated or integrated
term-by-term, as noted by Churchill [15]. For computer programming, equation (11) can
be written in terms of K's, which are functions of v, p, only

c/>h = PC[X+K1X3+K2X5+K3X7 +...]. (14)

The value of C for the clamped plate is

exp(3fJ)

/J
(15)

(16)

The general expression for displacement, w, obtained from equations (5) and (11) is

{ [(
- - - ) (2 - - )J1 K 1 K 2 K 3 X K 1 4 K 2 6

W = apC 2+4+6+8+'" - T+4 x +6 x +...

ap eXP(3/Jx2)-eXP(3/J)}
+62(3-v)' /J2 .

The maximum displacement occurs at x = 0, and is

(17)

CONSTRAINT CONDITIONS

The objective is to minimize the plate weight, while satisfying the two conditions of
constraint, i.e.

(18)

where ko is a specified coefficient and a equals the outer radius of the plate. The von Mises­
Hencky yield criteria is not violated throughout the plate, i.e.

(19)

where

(20)

(21)
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MINIMIZATION OF WEIGHT SUBJECT TO CONSTRAINTS

In terms of the state variables, ho, {3, the weight W of the plate is

W
2h [1 - exp( - {3)]

= Ita 0 {3 . y. (22)

In Fig. 3, for any hOi' i = 1, 2, ... , m, a pencil of curves /31' {32, ... , {3n can be drawn for the
clamped plate, which literally map the field between x = 0, 1. Thus, for a given set of values
of the variable constants a, Wo, q, E, v and (/0' the values of the variables /3 and ho can be
determined, in order to minimize the weight and satisfy the two constraints.

To start the minimization procedure, the weight can be minimized satisfying the first

xI

FIG. 3. Plate thickness as function of ho and fl.
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constraint only, i.e. equation (18). No attention is paid to the magnitudes of stress at this
stage. If stress is not a consideration, the values of {3 and ho obtained by minimizing the
weight for the first constraint only, called /3m and hOm' respectively, are the most optimum
values possible. Term 13m is the upper bound extremum value of {3. Following that, the
second constraint, equation (19), is imposed upon the first solution. The values of 13m and
hom may satisfy both constraints when the magnitudes of (/0, v and (qtkoE) are within
certain limits (see Figs. 5-7). Beyond these limits, the values of /3 and ho are either different
from /3m and hOm, respectively, thereby yielding a lesser optimum weight, or else no solution
exists at all.

The shape of the plate is defined by equation (1), for which positive values of {3 yield
convex diametral surfaces, while negative {3 yields concave surfaces (see Fig. 4).

r

-{3

/ poo

E_--l--_9~+p
o I

FIG. 4. Diametral shape of plate as function of fl.
x
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WEIGHT MINIMIZED FOR THE FIRST (DISPLACEMENT)
CONSTRAINT ONLY

For the clamped plate, equation (17) can be written as:

(1-v 2
) a4q 1

wlx=o = koa = (3 _ v) .E' h6 ·f(P)

where

where

- 1 K1 K2 K3
Bu = 2+4+6+8 + .

BL = 1+K1 +K2 +K3 + .

From equations (22) and (23), the plate weight can be written as

W= 3[(l-V2)]+ 1 [1-exp( -13)] [f(f3)]+ .
na. (3-v) . (koE/q)+' fJ . .y

For minimum weight

oW = ~{[1 -exp( - 13)] [f(f3)]+} = O.
013 013 13 .

(23)

(24)

(25)

(26)

(27)

(28)

The solution of equation (28) requires the determination of the convergence values of
four infinite series, i.e. Bu ' BL , oBu/of3 and oBJof3. For the clamped plate, equation (28),
expanded,becomes

t· [1-exp( -;13)]

[
Bu 2 3/1 ( 1 1 oBL ) 2 3/1 1 oBu 13 1 ]Jf;.' 13 .e 3-{j-Jf;.'8i + 13 .e . Jf;.' ap-2' exp(3f3)-3' [1-exp(3fJ)]

{f3 . [exp(3f3)] . ;:+~. [1-eXP(3f3)]}

+(1 +13). [exp( - 13)] -1 = O. (29)

The extremum values, 13m' were obtained for six values of v, and are listed in Table 1. From
equation (23), corresponding values of ho == hom can then be computed. The solution of
equation (29) is dependent only on v for the first constraint only.

TABLE I. Pm FOR VARIOUS VALUES OF V-{;LAMPED PLATE

v 0·15

-0·0826

0·20

-0-0150

0·25

0·1175

0·30

0·2968

1/3

0·5177

0·40

0·8808
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WEIGHT MINIMIZED FOR THE FIRST (DISPLACEMENT) AND
SECOND (STRESS) CONSTRAINTS

The second constraint condition can be handled by rewriting equation (19) with the
equality sign, and introducing an undetermined multiplier, G = G(x, (3, ho)

(30)

(31)

in which G :::::; 1 for all x. To determine the value of x == X m which maximizes G == Gm at
xm, 13m from the first constraint and equations (20) and (21) are substituted into equation
(30). The maximum allowable q == qm requires that Gm = 1 at Xm, and G :::::; 1 for all x. The
critical root xm is determined from

aG = 0
ax

(see Ref. [11, pp. 746, 747]). The maximum strain energy of deformation occurs at X m , the
critical root of equation (31). X m = 1·0 for all values of v and corresponding values of 13m
given in Table 1. Other roots of equation (31) exist at x = 0·0 for all values of v and at
x ~ 0·55-0·80 for v = 0·15-0·40, but these roots do not yield minimum weights.

OPTIMUM WEIGHT SOLUTION SATISFYING LOWER BOUND VALUE
OF YIELD STRESS, CJOm

With the use of equation (23), equation (30) can be expressed in terms of state variables
x and 13 only. Letting G = 1, then for a given value of v and corresponding values of 13m
and X m , equation (30) can be put in the form

t (3 - v) t _1_ -t _1 2 _ 1-
(9) . (1- v2) . (q . ko . E) . f(13m) . Qm· exp( 213m· Xm) - (1). CJOm (32)

where iJm = iJm(Xm' 13m' hom)· Lower bound values of CJOm can be obtained for corresponding
values of the function (qt koE). As long as the given CJ 0 ~ CJ Om' both constraints are satisfied,
and the weight is minimized at its optimum (see Fig. 5).

OPTIMAL WEIGHT SOLUTION WHEN CJo < CJOm

Consider a given set of values q, Wo, a, for some set of values E, v and CJo. If the function
(qtkoE) yields a lower bound CJOm > CJo, the second constraint is not satisfied. Then, there
exists an interval Xl < X < X 2 where G > 1. If a penalty on the optimum weight is accept­
able and providing CJo/CJom is not less than a certain value determined via the computer
process, both constraints can be satisfied. The results are plotted in Fig. 7. A detailed
procedure to obtain a computer solution is given in Ref. [11], and requires certain multi­
stage decision processes.

EXAMPLE PROBLEM SOLVED USING PLOTIED CURVES OBTAINED
FROM THE COMPUTER SOLUTION

The derived equations were solved on the IBM 360/50 computer using Fortran IV, and
the results were plotted in Figs. 5-8. The solution to the problem of weight minimization
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2XIO'..---,-------r------..--------,

FIG. 5. O"m vs. (qt. ko' E) for variable v--clamped plate.

FIG. 6. a/hom vs. koE/q for variable v--clamped plate.
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FIG_ 7. {J VS. (JO/(JOm for variable v-damped plate.

of a thin plate of variable thickness can be put into one of two categories, or cases, in the
search for a optimum solution.

Case 1

Find ho, 13 and allowable load q == qm' when given quantities a, Wo, v, E and (10'

For this case the weight can be optimized at its extremum value, in which 13 == 13m'
ho == hOm' for G .::; 1 for all x and Gm = 1 at xm. This yields the upper bound value of the

1'5 x 103r------r----,---------r----,--------,--~

koE/q

FIG.8a. a/ho VS. koE/q for v = 0·15 and variable {J-damped plate.
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1'5,10't---,----.,..---,..----,----.--------:

FIG. 8b. a/ho vs. koE/q for v 040 and variable p-{;Iamped plate.
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allowable load, q == qm' by setting (To == (TOm' and thus satisfies the first and second
constraints.

Example 1. Given a = 10 in., Wo = 0·07 in., E = 3 X 107 psi, v = 1and (To = 30,000 psi.
From Table 1, 13m = 0·5177; from Fig. 5, letting (To == (TOm' then (qtkoE) = 9·40 x 105

;

using equation (17), q == qm = 20·0 psi; then, using Fig. 6 which plots koE/q against a/hom'
koE/q = 1·05 x 104 and a/hom = 31·6 for v 1; thus, hom = 0·32 in. and from equation (1),
ha = 0·19 in.; from equation (22), for a steel plate, W = 0·283 x 77·4 = 21·9 lb.

Case 2

Find ho, 13, when given quantities a, Wo, v, E, q and (To.
When (To < (TOm' as determined from Fig. 5, then Case 2 applies. For this case, the

minimum weight is attained which satisfies both constraints.
Example 2. (Refer to data in example 1.) Given a = 10 in., Wo = 0·07 in., E = 3 X 107 psi,

v = 1-, q 21.4psi and (To = 18,000 psi. Since (qtkoE) = 9·40 x 105 and (TOm = 30,000 psi
from Fig. 5, then (To < (TOm and Case 2 applies. Now, (TO/(TOm = 0·60 and in Fig. 7,
13 = -0·243. Then, in Figs. 8, for koE/q = 1·05 x 104

, a/ho = 44·6 for v = 1- and
ho = 0·22 in. From equation (1), ha = 0·28 in. From equation (22), W = 0·283 x 79·8
= 22·6 lb. We note in Fig. 7, that had (To been taken as less than 16,000 psi, no solution
would exist.

SUMMARY AND CONCLUSIONS

Clamped axisymmetric thin plates of varying thickness can be minimized for weight
subject to both displacement and stress constraints. These constraints specify a given
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displacement at the center of the plate and do not violate the von Mises-Hencky yield
criteria. The material is assumed homogeneous and isotropic. The state of stress remains
everywhere elastic. Such a combination of constraints may be required for pressure­
sensitive devices, and where clearances are tight.

The necessary mathematics was developed to accomplish the minimization process,
and the resulting equations, containing infinite power series, were solved on the IBM 360/50
digital computer. For a wide range of the variable constants, i.e. a, wo, q, E, vand (J 0' curves
were plotted which readily yield an optimum diametral shape. The extent, to which the
plate weight may be optimized, depends on the relative magnitude of these quantities. No
solution exists for certain ranges of these values, as is evident in the plotted curves.
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